

Western Regional Boiler Association

MACT Solution Synergies: How Improving Combustion Can Reduce MACT APC Footprint, Investment and Operating Cost

> Edmundo R. Vasquez Dennis Shanahan March 13 2013

- Background
- Stacked Air System (SAS)
- Combustion Emission Solutions
- SAS Impact on ESP design
- SAS Impact on ACI/DSI Design
- Conclusions

BACKGROUND

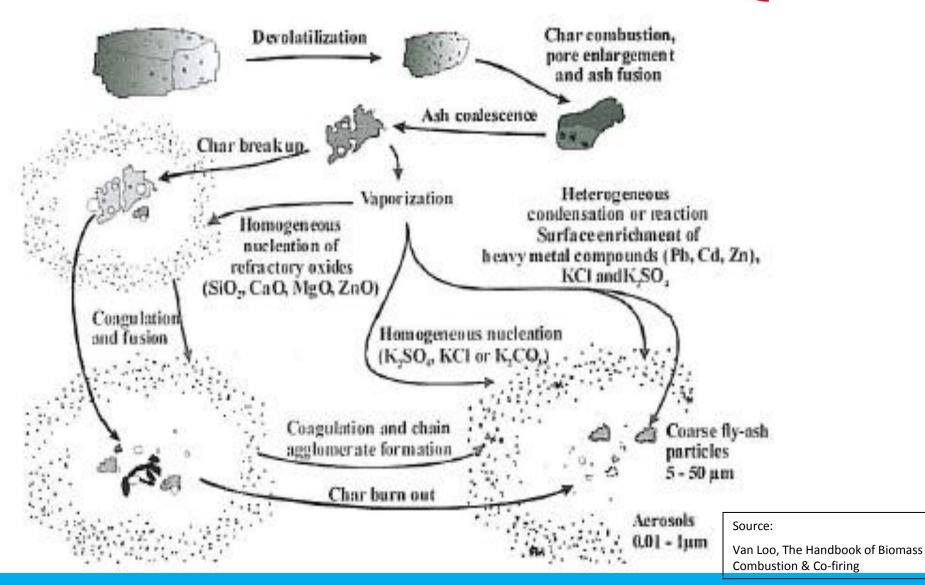
Project Goal: Begin with the End in Mind

Boiler MACT Facts: Emission Limits, Existing Units, Solid Fuels

Source: Federal Register, Vol. 78, No. 21, Dated January 31, 2013; Part V, EPA 40 CFR Part 63 Data provided is for information purposes only. The rule shall be the governing authority.

										Power G	QUO	
Subcategory	PM (Input) [lb/MMBtu]	PM (Output) [Ib/MMBtu]	TSM (Input) [Ib/MMBtu]	TSM (Output) [lb/MMBtu]	HCI (Input) [Ib/MMBtu]	HCI (Output) [Ib/MMBtu]	Hg (Input) [lb/MMBtu]	Hg (Output) [lb/MMBtu]	CO (Input) 3 Run Avg. [ppm@3%O2, dry]	CO CEMS (Input) 30 Day Avg. ^(a) [ppm@3%O2, dry]	CO (Output) 3 Run Avg. [lb/MMBtu]	
Coal Stoker	0.040	0.042	5.30E-05	5.60E-05	0.022	0.025	5.70E-06	6.40E-06	160	340	0.14	
Pulverized Coal	0.040	0.042	5.30E-05	5.60E-05	0.022	0.025	5.70E-06	6.40E-06	130	320	0.11	
Coal Fluid Bed	0.040	0.042	5.30E-05	5.60E-05	0.022	0.025	5.70E-06	6.40E-06	130	230	0.12	
Coal Fluid Bed w/FB Heat X	0.040	0.042	5.30E-05	5.60E-05	0.022	0.025	5.70E-06	6.40E-06	140	150	0.13	
Biomass Wet Stoker/ Sloped Grate/ Other	0.037	0.043	2.40E-04	2.80E-04	0.022	0.025	5.70E-06	6.40E-06	1,500	720	1.40	
Biomass Kiln- Dried Stoker/ Sloped Grate/ Other	0.320	0.370	4.00E-03	4.60E-03	0.022	0.025	5.70E-06	6.40E-06	460	ND	0.42	
Biomass Fluid Bed	0.110	0.140	1.20E-03	1.50E-03	0.022	0.025	5.70E-06	6.40E-06	470	310	0.46	
Biomass Suspension Burner	0.051	0.052	6.50E-03	6.60E-03	0.022	0.025	5.70E-06	6.40E-06	2,400	2,000 ^(b)	1.90	
Biomass Dutch Oven/ Pile Burner	0.280	0.390	2.00E-03	2.80E-03	0.022	0.025	5.70E-06	6.40E-06	770	520 ^(b)	0.84	
Biomass Fuel Cell	0.020	0.055	5.80E-03	1.60E-02	0.022	0.025	5.70E-06	6.40E-06	1,100	ND	2.40	
Biomass Hybrid Susp Grate	0.440	0.550	4.50E-04	5.70E-04	0.022	0.025	5.70E-06	6.40E-06 (Input) = Heat input ba	2,800	900	2.80	
WRBA 2013 Portland Oregon							:	 (Output) = Steam output basis (a) = 30 day rolling average, except as noted 				

© CBPG Clyde Bergemann Power Group - All rights reserved


• (b) = 10 day rolling average CLYDE

Damar Granna

BERGEMANN

Biomass Combustion – Ash formation

Combustion Products: Gases and Gas Pollutants

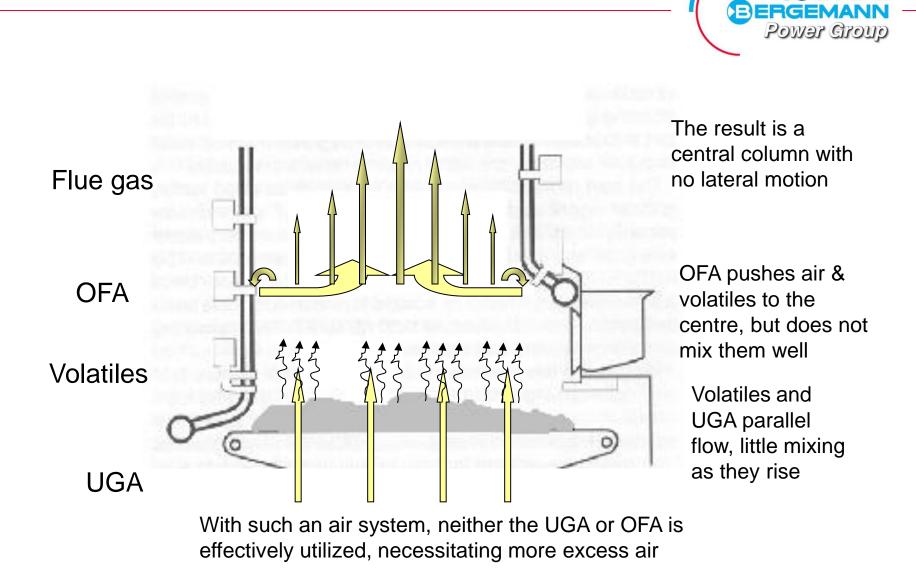
- Combustion products of standard fossil fuels and biomass in commercial and industrial boilers produce the following main gases:
 - carbon dioxide (CO₂)
 - nitrogen (N₂)
 - oxygen (O₂)
 - \succ water (H₂O)
 - carbon monoxide (CO)
 - > nitrogen oxides (NO and NO₂ called NOx, N_2O)
 - > sulfur oxides (SOx: SO₂, SO₃)
 - volatile organic compounds (VOC) and hydrocarbons (HC)
- CO, NOx (NO+NO₂), N₂O, SOx (SO₂, SO₃) and VOC's and HC's are considered pollutants
- The primary greenhouse gases in the Earth's atmosphere are water vapor, CO₂, methane, nitrous oxide and ozone.

In-Furnace Emission Control Techniques

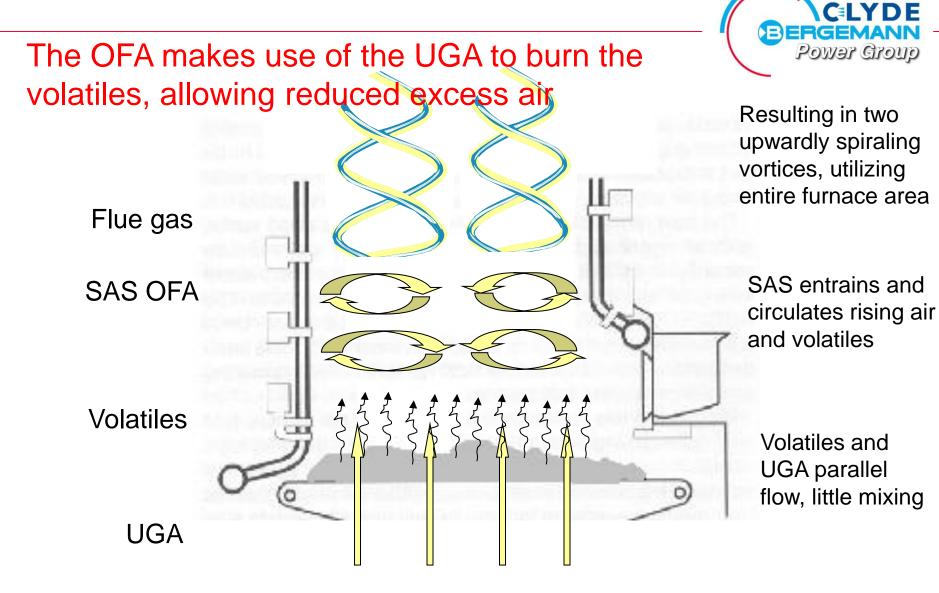
 Reducing CO/NOx emission formation in-furnace requires the proper burner/boiler design and a delicate balance of operating conditions

→ Grate/Burner:

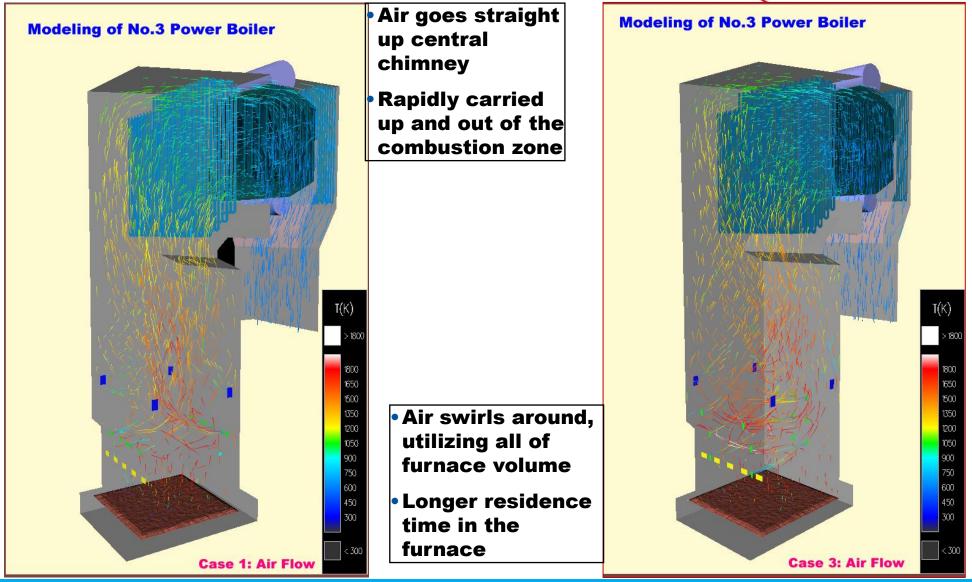
- Design for Low NOx Modifications
- Optimize operation to control emissions


→ Combustion Tempering:

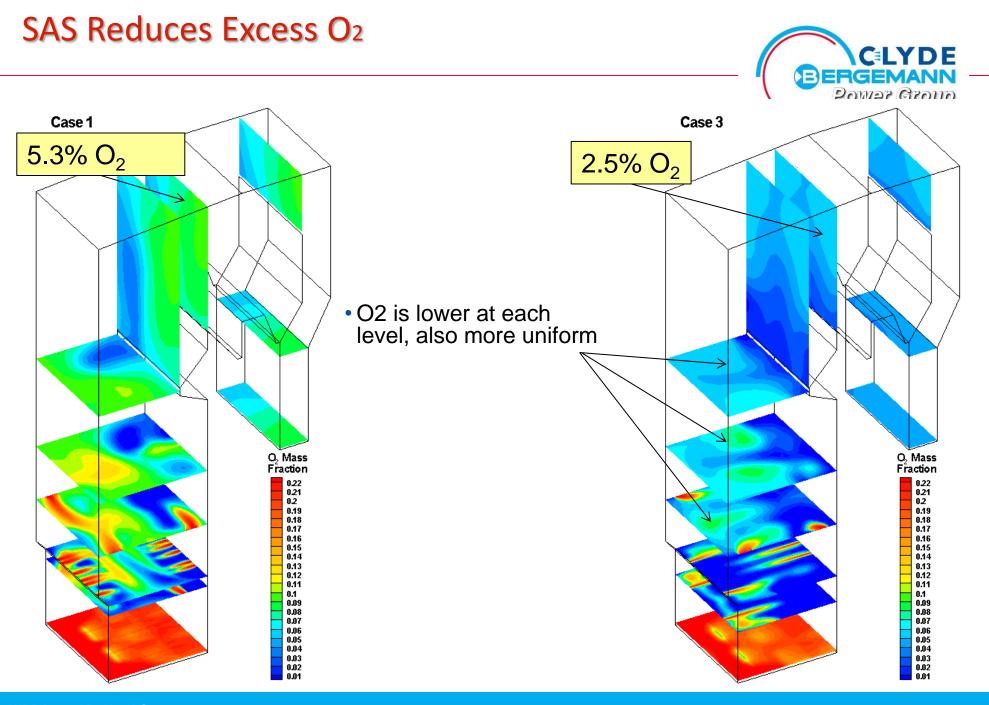
- Water/Steam Injection
- Near burner zone water wall cleaning
- → Flue Gas Recirculation
- → Air staging: Overfire Air
- → Fuel staging: Reburning
- →Oxygen use: Oxy Fuel


STACKED AIR SYSTEM

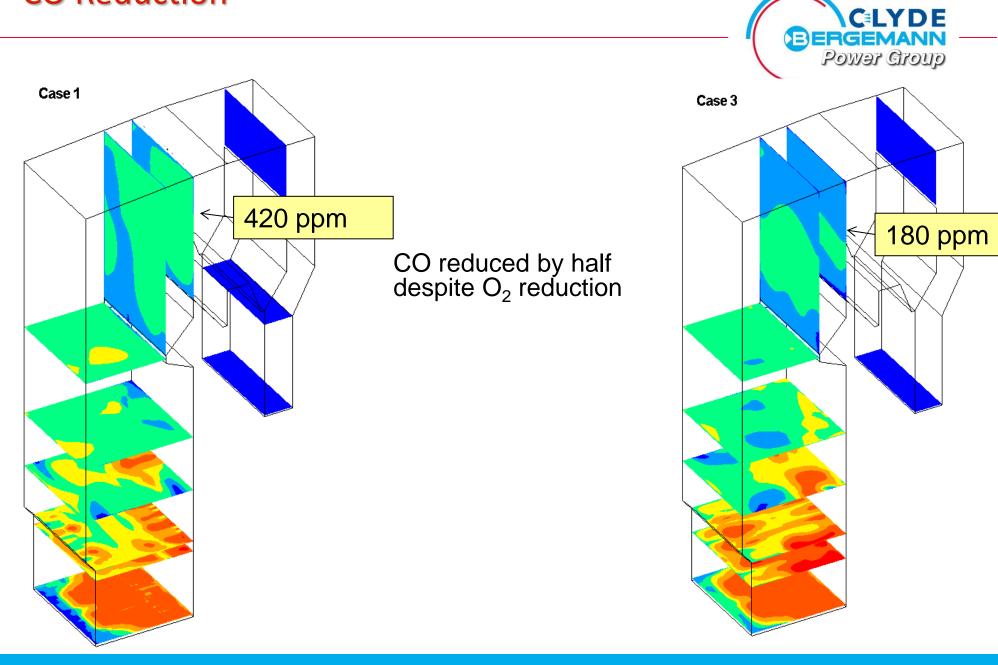
Conventional Overfire Air System

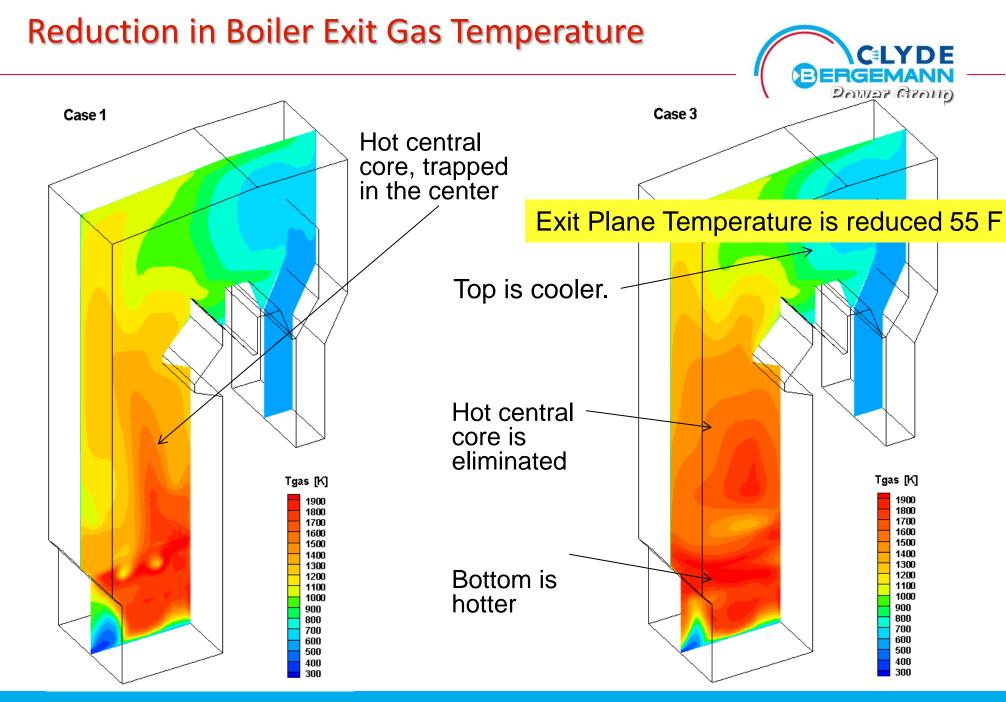

CLYDE

CBAM Stacked Air System



Case Study – Interlaced vs SAS



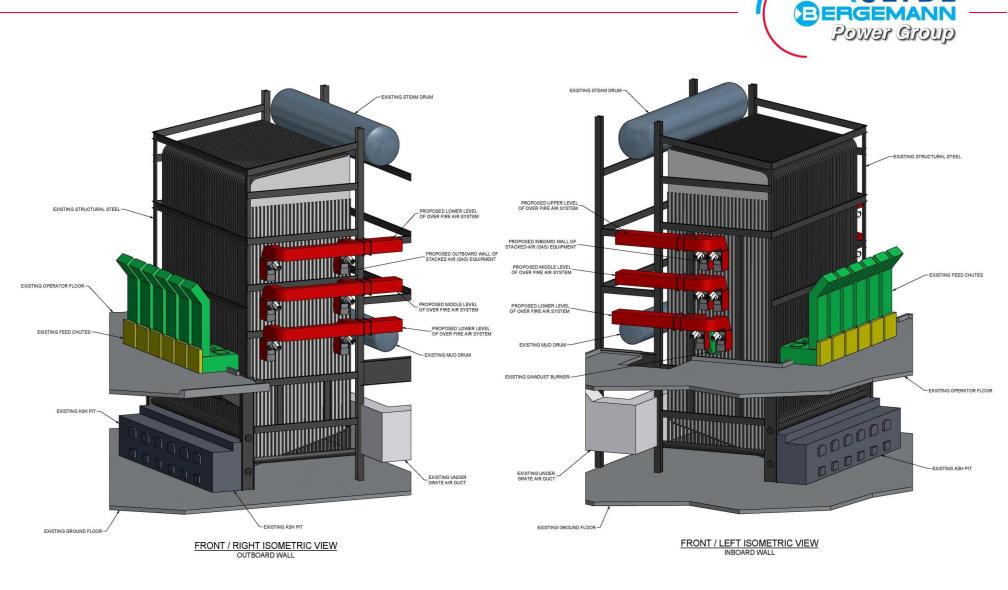


WRBA 2013 Portland Oregon

CO Reduction

WRBA 2013 Portland Oregon

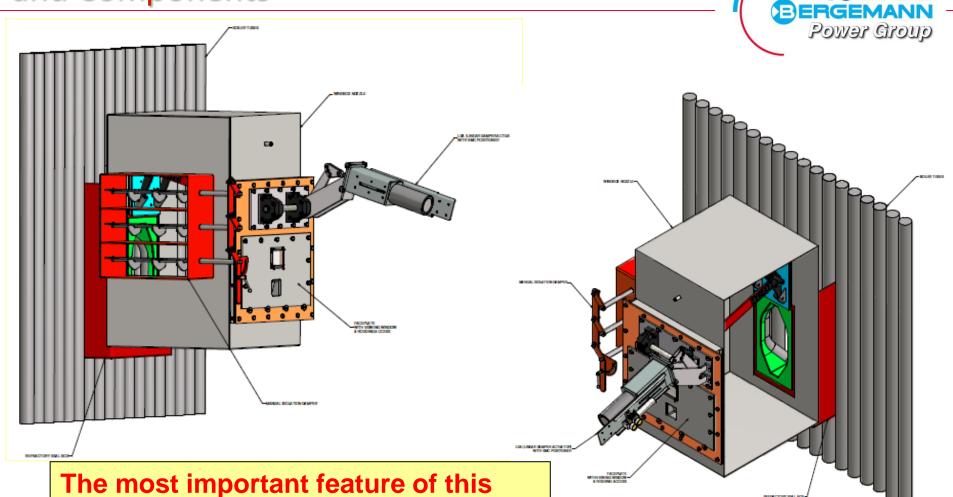
© CBPG Clyde Bergemann Power Group - All rights reserved


Combustion Modifications Impact on APC Technologies

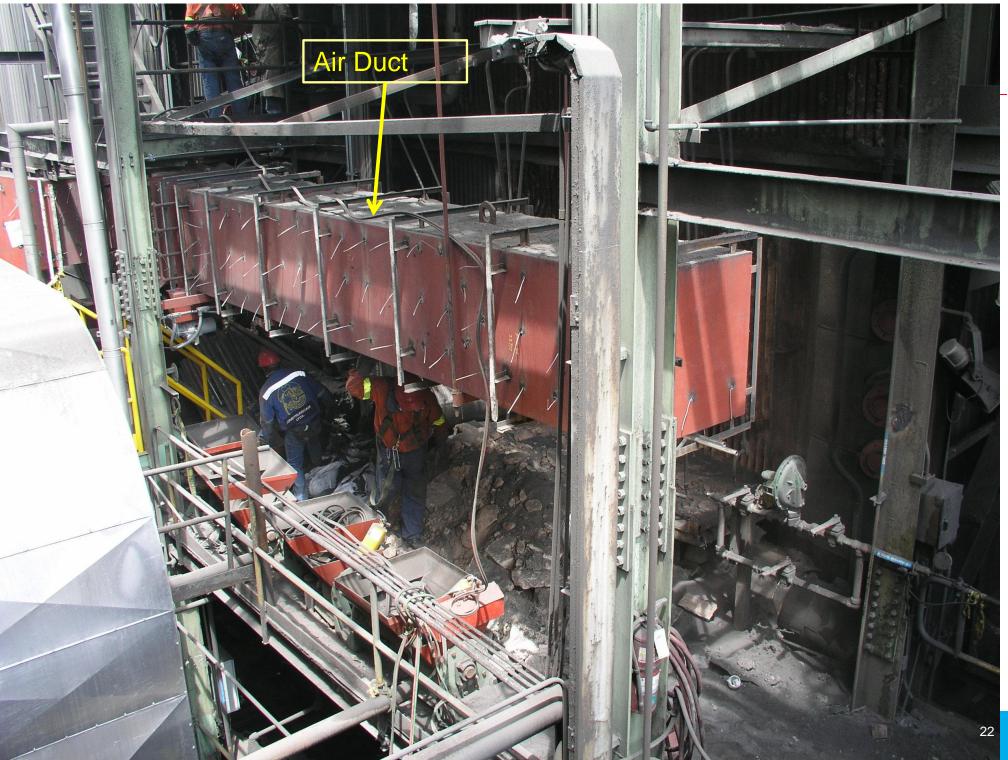
- Reducing unburned gases CO and unburned solids (LOI)
- Reducing Particulate matter carryover
- \blacktriangleright Reducing combustion air, flue gas flow and excess O₂
- Reducing NOx
- Reducing FEGT (Furnace Exit Gas Temperature) by helping transfer heat to the waterwall)
- Increasing boiler efficiency and improving fuel utilization
- Improving Inlet Conditions to APC Control Equipment

	FEGT and Profiles	Flue Gas Flow	Flue Gas velocity and Profiles	Flue Gas NOx and Profiles	Total Comb. Air	UBC	CO	Fuel Use
Impacts	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Clyde Bergemann Stacked Air System Schematic


CLYDE

SAS Modifications


© CBPG Clyde Bergemann Power Group - All rights reserved


Clyde Bergemann Wind box Nozzle, Positioner and Components

The most important feature of this design is that it provides the ability to independently control jet mass flow and jet velocity CLYDE

 WRBA 2013 Portland Oregon

 © CBPG Clyde Bergemann Power Group

CELYDE BERGEMANN Power Group

CELYDE BERGEMANN Power Group

WRBA 2013 Portland Oregon © CBPG Clyde Bergemann Power Group - All rights reserved

 WRBA 2013 Portland Oregon

 © CBPG Clyde Bergemann Power Group

SAS Impact on ESP Design

- Boiler type
 - → Fuel analysis
 - → Fly ash analysis
- Operating conditions
 - → Temperature, pressure
 - → Heat Rate
- Flue gas volume & constituents
- Particulates
 - →Inlet particulate loading
- Outlet emission requirements

Fuel/Fly ash Analysis

- → PC, Cyclone, CFB, and Stoker all have different particle sizes
- → Mechanical collector will impact particle size of particulate
- → Fuel analysis provides indication of particle size and flue gas environment (amount of SO₃ and moisture present)

Fly ash Resistivity is the fundamental basis of ESP sizing

- → Ash analysis provides an indication of the resistivity of fly ash
- \rightarrow Na₂O, Fe₂O₃ are beneficial to good resistivity
- \rightarrow CaO, MgO counter effects of SO₃ not beneficial
- \rightarrow Al₂O₃, SiO₂ are insulators create excessive resistivity
- Resistivity is temperature related. Higher temps (on a cold-side ESP) usually lead to higher resistivity

Operating Conditions

- → Resistivity is temperature related
 - Higher temps (on a cold-side ESP) usually lead to higher resistivity
- Temperature and pressure are used to correct from actual to standard conditions

Flue Gas Volume

- → Used to size ESP in terms of gas velocity and time of treatment
 - Typical gas velocity for most applications is between 3.5 4.5 fps
 - Typical treatment times are 8.0 12.0 seconds
- Lower gas velocity and higher time of treatment are more conservative, yet may be necessary for very low emission levels

Gas constituents

- ➔ Moisture is a conditioning agent
 - Increased moisture improves (lowers) resistivity slightly
- \rightarrow SO₃ is a conditioning agent, related to amount of sulfur in fuel
 - Increased SO₃ improves (lowers) resistivity

Inlet particulate loading

- → Related to Efficiency calculation
- ➔ Impacts size of ESP
- ➔ Affects discharge electrode selection & sizing
- → Also affects size & type of power supply (transformer rectifier, or T/R)

Outlet emission requirements

- → Related to efficiency calculation
- Impacts size of ESP
 - Desired efficiency
 - Desired gas velocity & time of treatment
- → Low outlet emission requirements may necessitate
 - Slowing down gas velocity
 - Extending time of treatment (TOT)
- → Some requirements may be too low to commercially guarantee

Technology CBPG Rigitrodes

- Over 170 new installations with Rigid Electrodes

Developed By CBPG 81 New Recovery installations Numerous retro-fits More Rigid Electrode Experience than ALL others combined!

- Stable High Voltage Frame System

Bolted Top & Bottom Frame to form Rigid matrix design Solid Large Diameter Pipe (one-piece) Design Bolted / Closed ends prevent build-up NO Weights required

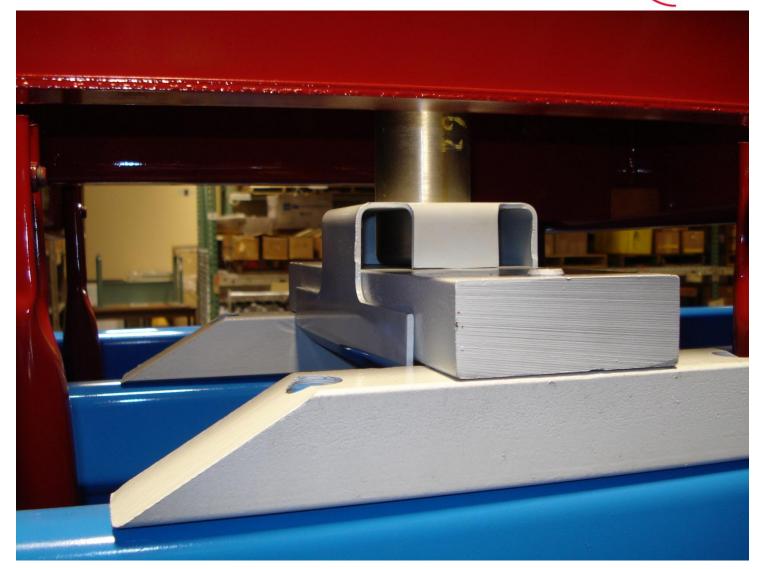
- Multiple Pin Designs tailored to Application

Power Boiler Design Salt cake Design

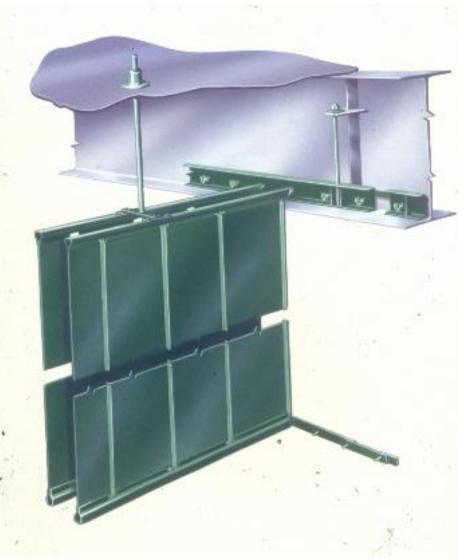
CBPG Collecting Plates and Rigitrodes

Rigitrode® Electrodes

- Does not exhibit the corona suppression associated with some rigid electrodes.
- Various pin configurations provide corona densities less than and greater than other designs
- The most energy efficient rigid electrode available


Rigitrodes

Direct Collecting Plate Rapper System



Collecting Plate Rapping

CELYDE BERGEMANN Power Group

Provide energy directly into plate

- No disturbance to dust build-up on adjacent plates
- Rapping forces not dampened by mass of other plates/casing

RD 3000 Automatic Voltage Controls

- The latest innovation in improving an existing precipitator performance without mechanical modifications
- The best bang for the \$
- Simple installation on existing esp sometimes while online with a field out of service (reduced production rate)
- Existing TR <u>may</u> be used

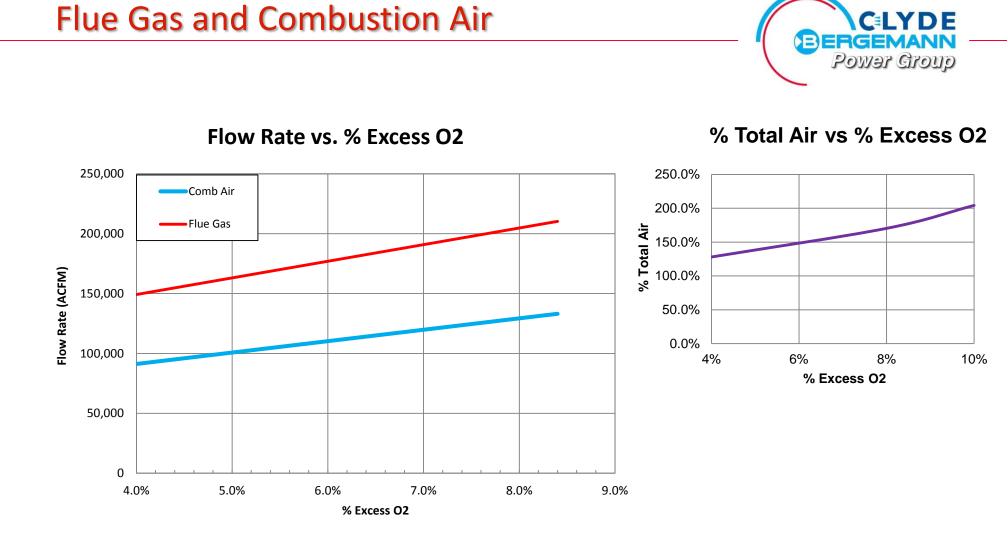
Controls – T/R

Metering:

- Primary Voltage and Current
- Secondary
 Voltage and
 Current

APC Performance Case Study

- Plant A
 - → Steam flow:


300 KPPH, 600 psig,750 F

- → PRB coal:
 - ~26% moisture & 8911 Btu/hr
- ➔ Fuel Emissions:
 - 0.21% Sulfur
 - 0.03% (max.) Chlorine
 - 0.10 ppm (max.) Mercury

Design Operating Conditions:

Excess O2	8.4% O2 ESP & DSI design	4% O2 SAS
Fuel Flow(#/h)	48,869	46,542
Heat Input(MMBtu/hr)	435.5	414.7
Comb.Air(ACFM@105F)	133,115	91,211
Flue Gas(ACFM@375F)	210,292	149,200
Boiler Efficiency (%)	80.0%	84.0%
HCI Emissions (Ib/MMBtu)	0.035	0.035
HCI Emissions (lb/hr)	15.07	14.36
SO ₂ Emissions (lb/MMBtu)	0.471	0.471
SO ₂ Emissions (lb/hr)	123.15	117.29
Hg Emissions (lb/Tbtu)	11.22	11.22

•29% reduction on flue gas, 32% reduction on combustion air

Heat input reduce 20.8 MMBtu/hr

The ID and FD power savings are based on electricity rate \$0.06/KWh

Fan Savings	8.4% to 4% O2	
	ID (360 F)	FD (105F)
Flow Rate (ACFM)	61,092	41,904
Pressure Drop (in)	10	10
Fan Efficiency	70%	70%
Motor HP	133.5	91.6
\$/y	\$ 50,205	\$ 34,436
Total \$/y	\$ 84,641	

	8.4% to 4% O2	
Fuel Savings (MMBtu/h) (85% capacity) equivalent	17.7	
Steam Increase (kpph) (85% capacity) equivalent	12.7	
Fuel Saved per year(MMBtu/y) (85% capacity)	148,512	
Savings (\$/y):		
PRB Coal (\$2/MMBtu)	\$297,024	
Aux Power	\$84,641	
Other (Maintenance, Operations, etc.)	\$80,000	
Annual Savings Estimate	+\$460,000	
ESP Size Price differential \$5.47M to \$4.65M	+820,000	
SAS Cost	-\$1,200,000	
ROI (years)	0.82	

- For this unit(~300 kpph), current operating is 8.4% excess O2, with SAS can operate at 4% excess O2 with this type of coal (PRB ~26% moisture).
- Flue gas can be reduced from ~210,000 ACFM to 149,000 ACFM which is ~30% reduction due to a more efficient combustion obtained 4.0% with the installation of SAS.
- According to our boiler efficiency estimates, can be explained by
 - a reduction of excess O2 level from 8.4% to 4%
 - lower CO emissions due to combustion improvement by SAS (~2500 ppm to ~500 ppm)
 - a reduction in total unburned fuel to 1.5% to 2.5% from much higher inefficient burnouts
- Return on investment is less than one year for the new SAS system with a reduced size ESP and 2.5 years with same size ESP.

SAS Impact on ACI/DSI Design

Mercury Emissions Design:

Excess O2	8.4% O2 ESP & DSI design	4% O2 SAS	
Flue Gas(ACFM@375F)	210,292	149,200	
Hg Emissions (lb/TBtu)	11.22	11.22	
Hg Outlet (lb/TBtu)	5.70	5.70	
Reduction %	49%	49%	
PAC Consumption Rate (lb/mmacf)	4.0	4.0	
PAC Consumption Rate (lb/hr)	51	36	
PAC Consumption Rate (lb/yr)	446,760	315,360	
PAC Cost (\$/yr) @ \$1.00/lb	\$446,760	\$315,360	
Sorbent Savings from SAS (\$/yr)	N/A	\$131,400	

Note: ACI equipment scope and capital cost remains unchanged

- SAS Improvements:
 - ➔ Boiler Efficiency
 - ➔ Reduction of Comb. Air
 - Reduction of Flue Gas volumetric flow rate
 - SAS Savings:
 - Reduction of Sorbent consumption rate
 - Total Sorbent consumption savings per year

Acid Gas Emissions Design:

Excess O2	8.4% O2 ESP & DSI design	4% O2 SAS	•
Heat Input(MMBtu/hr)	435.5	414.7 ←	
HCI Emissions (Ib/MMBtu)	0.035	0.035	
HCI Emissions (lb/hr)	15.07	14.36	
HCI Outlet (Ib/MMBtu)	0.022	0.022	
Reduction %	52%	52%	
Trona Consumption Rate (lb/hr)	321	305	
Trona Consumption Rate (tons/yr)	1,406	1,336	
Trona Cost (\$/yr) @ \$200/ton	\$281,200	\$267,200	
Sorbent Savings from SAS (\$/yr)	N/A	\$14,000	

Note: DSI equipment scope and capital cost remains unchanged

- SAS Improvements:
 - ➔ Boiler Efficiency
 - ➔ Reduction of Heat Input
 - Reduction of Acid Gas Emissions (Mass Flow Rate)
- SAS Savings:
 - Reduction of Sorbent consumption rate
 - Total Sorbent consumption savings per year

CONCLUSIONS

Conclusions for ESP, ACI and DSI Impact

SAS Improvements:

- ➔ Boiler Efficiency
- → Reduction of Heat Input
- → Reduction of Acid Gas Emissions (Mass Flow Rate)

ESP

- ➔ Reduced Foot print
- → Reduced Operating Costs

ACI

- → Reduction of Sorbent consumption rate
- ➔ Total Sorbent consumption savings per year

DSI

- → Reduction of Sorbent consumption rate
- Total Sorbent consumption savings per year

www.cbpg.com