So... You're Going to Perform a Stack Test

PASCO

WRBA Annual Meeting March 10-12, 2015 Bob Morrow – Detroit Stoker Co.

Detroit Stoker Company

- Established 1898 Monroe, Michigan USA
 - Solid Fuel Combustion Systems
 - Solid Fuel Feeding/Metering Systems
 - Rotary Seal Feeders/Double Flap Airlocks
 - Low NOx Gas/Oil Burners
 - Aftermarket Parts & Services
 - Engineering Studies

Biomass/ Renewable Fuels

Preparing For A Stack Test

Preparation – Before Hand

- Boiler Drawings & Design Data Sheets

 Equipment Conditions
- Reports (Inspection & Operational)
- Fuel Analysis
- Permit Requirements and Reports
- Controls & Data Acquisition

Avoiding Surprises

Site Arrival

Getting Started

- Current Boiler Load and Steam Load Conditions
 - MCR or less?
 - Grate conditions & Fuel Distribution
 - Excess Oxygen
 - Secondary air conditions
 - Boiler design conditions
 - Temperatures, draft, pressure drops
- Auxiliaries
 - Post combustion SNCR, SCR, Bag Houses, ESP
- CEMS

January 2015 Example

- 1987 -174 KPPH Steam flow (MCR)
- Spreader Type Traveling Grate System
- Hogged wood and sludge
- ESP, Economizer
- Air heater Steam Coil @ F.D. fan Discharge
- OFA, Primary air, Distribution air & Reinjection air are all preheated
- Two rear wall gas burners
- OFA modified in 2006

Goals

- Establish baseline data
- Determine capabilities of existing equipment
- Determine and prioritize steps to be taken both short term (2015) and long term (2016) and beyond
- Government requires equivalent of Boiler MACT tune up along with reduced Emissions

Emission	Current	2016 Required
	values	Values
СО	0.243	0.162
lbs/MMBtu		(200 ppm @3% O2)
NOx	0.487	0.243
lbs/MMBtu		

Viva La France

Preliminary Evaluation/Considerations

- Items of Interest
 - Operational Investigation/Audit
 - Combustion Tuning
 - Fuel Handling, Metering, Distribution
 - Tramp Air Leakage
 - Combustion Air(s)

Fuel and Handling

- Fuel type and mixture being fired
- Fuel preparation and sizing
 - Introduce sludge at metering bin
 - Shredder screens
- Fuel Quality
 - Ash and moisture
- Fuel Metering Screw biases necessary?
- Fuel Mixing and Segregation

Fuel Type

Hogged/Chipped Wood Waste and Sludge

- 40 50% moisture Wood waste
- 2 TPH maximum input sludge
- >50% less than ¼" sizing
- 10% by heat input gas firing minimum at all times

Fuel Particle Size Distribution

"Our Opportunities Are Always Growing"™

Metering Bin Arrangement

Straight side and rear walls

Fuel Chute Arrangement

Center line of Screws

Steep angle pushes fuel to

outside of distributor

Recommendations for Fuel Chutes

Recommendations for Fuel Chutes

NOT ACCEPTABLE

ACCEPTABLE

©2015 Detroit Stoker Company. All Rights Reserved

Fuel Chute Examples

Metering Bin/Fuel Chute Design

- Large single bin design
- Single screw feeding three (3) air swept spouts
- Short vertical drop into distributor (<10')
- Steep angles to outside distributors off of metering bin
 - Pushes fuel to side walls without necessary vertical drop to disperse across width at distribution plate

Balanced Damper Modifications

Fuel Distribution

- Plant operating with distribution pressures from 8" w.c. – 25" w.c. as found
 - Considered high given fuel and grate length
 - Operators fighting with piling and uneven distribution
 - Adjusted distribution to 5" w.c. to 12" w.c.
 - Continued fuel distribution to rear wall with substantial reduction in piling observed

Air Seals and Leaks

- Stoker to boiler air seals in disrepair
- Leakage around distributor openings and extension fronts
- Important to seal any sources of air in-leakage

Wet Bottom Ash Drag - Now Dry

- Originally
 commissioned wet
 bottom drag
- Been running dry to minimize moisture in ash for agricultural use of ash
- Substantial tramp air induction with negative draft

Burner Cooling Air Requirements

- Old vintage burner design
- Requires excessive cooling air
- No provision for throat gate

Burner Throat Gates

Burner Refractory Throat Shut-Off Gate Assembly:

 Minimizes Tramp/Excess Air in Furnace for Optimal Emissions when Auxiliary Burners Are Off

Gas Burner Fan Air Preheater?

Hot air being pulled from Primary air duct for deicing

- 10" line off of FD duct
- Blows air across open space into burner fan inlet
- Intention to keep fan from icing over

Starves left hand side of grate and creates imbalance in combustion air

Cinder Reinjection System

- Air leakage above and below lines
- Excessive air for conveying re-injected material

Reinjection Air In-Leakage

- Slide gates in poor condition
- No rotary air locks on reinjection lines
- Tramp air leaks in reinjection box generate CO

Steam Coil Air Heater

- Typical fuel moisture of 45 – 50%
- Recommend 450 500°F preheated air
- Current SCAH limited to ≈400°F Max
- Steam leak detrimental to efficiency

Combustion Tuning

- Primary/Secondary Air Ratio
- Automatic Control
 - Found to be operating unit mostly in manual control
 - Controls system overview
- Excess air level
 - O2 Trim Adjustments
- Preliminary Emissions Baseline

Useful OFA Pressures

Detroit Stoker Company "Our Opportunities Are Always Growing"

Impact of Reinjection on CO

Detroit Stoker Company "Our Opportunities Are Always Growing"

Distribution Air Adjustment

Detroit Stoker Company "Our Opportunities Are Always Growing"

D

Tuning Lessons Learned

- Increase in OFA pressure actually lowered O2

 Primary air flow was maintained
- O2 levels unstable as O2 trim control is not tuned and operated in manual
- Reduction in distribution air and reinjection air helped stabilize firing conditions
- Observed high frequency of soot blowing

 Operators reasoning was for controlling drum
 pressure

Soot Blowing and Draft

Once Upon a time Firing Coal...

Importance of Primary Air

During Soot Blow Operators increase draft from ⁻0.05 " w.c. to ⁻0.14 " w.c

Ruh-Roh...

Sucked the Coal out of the Feeders !!!!!!!!!

Thank You

Live Long and Compliant

