

Approaches to Improve ESP Performance

Design Criteria	UPGRADE Options:
Increase Collecting Area	Rebuild with Taller Plates
	Add a Field or Chamber
Increase Migration Velocity	Upgrade Control Systems & Power Supplies
	Restore Electrical Clearances
	Sectionalize Electrical Fields
Reduce Gas Flow to the ESP	Reduce Gas Steam Temperatures
	Reduce Production
	Improve Gas Flow
NOTE: The above information	assumes the existing ESP is in satisfactory condition and

maintained. If not, then the first step is to perform a detailed inspection and do required repairs.

ESP Performance Improvement

CELYDE BERGEMANN Powar Groud

- ESP Performance Improvements can be done via two paths, or a combination of both:
 - Modifications or Enhancements to Existing ESP
 - Structural/Physical Changes to ESP Size

To Upgrade or Replace???

- Major Factors To Be Considered:
 - Site Real Estate Restrictions
 - New Performance Requirements or Emission Control Requirements (State & Federal)
 - Sorbents and Additives That May Impact Performance
 - → Outage Time Available
 - Life Cycle Of The Unit
 - Long Term Static Fuel Supply or Is Flexibility Required
 - Is The Current ESP Mechanically Reliable & Sound (corrosion)

Step #1: Fix what is broken

Common issues with existing ESPs

- Are the internals aligned?
- Are <u>all</u> rappers working?
- Are T/R controllers working and optimized?
- Is ash removal system working?
- Are all insulators clean?
- Have any leaks been eliminated?

Available Upgrades for Existing ESP's

- Enhanced Power Supplies
 - Electrical Sectionalization
 - Higher capacity Power Supplies and High frequency switch mode controls
- Customized rigid discharge electrodes for maximum particle charging
- Wider plate spacing increase power for collection
- Optimized and customized rapping programs
- Proper gas distribution throughout ESP

Electrical Field Sectionalization

- Powering sections of the precipitator by adding HV frames and more TRs is called "splitting fields"
- High particulate loading in the inlet field usually causes high spark rates, which leads to frequent quenching of the entire field
- Splitting fields leads to only a portion of the given HV section being quenched in response to sparking

Upgrading Power Supplies

Conventional T/R designs

→ Industry standard, Reliable, Most prevalent design

- High frequency power supplies
 - → Increased average precipitator voltage and better 40 collection efficiency

0

Rigid Discharge Electrodes & Plate Spacing

- Bolted connection
 - Continuous single piece tube requires no assembly
 - Various pin configurations provide desired corona densities for specific application
- Eliminate downtime from broken electrodes
 - Common with weighted wire electrodes
- Stable high voltage frame has closed ends to prevent build-up of PM
- Most energy-efficient rigid electrode available
- Widened Collecting Electrode Plate spacing

Optimized Rapping Program & Equipment

Opacity charts to evaluate current rapping

- →Opacity spikes due to rapping
- → Localized rapping issues
- → Excessive rapping
- Properly adjusted rappers
 - → Intensity Up to 20 ft. lbs. force
 - → Cycle time
 - → Multiple rap
- How are the plates, frames, and electrodes being rapped???

Improved Gas Distribution

- Determining the proper distribution of gas for maximum collection efficiency
 - Need to maintain gas within treatment zone
- Other factors to consider:
 - Condition of inlet perforated plate
 - Hopper dust reentrainment
 - Sneakage out of the treatment zone
- Tools:
 - Start with a proper CFD model of the current ESP design
 - Vertical Baffles and girder extensions
 - Rapping of perforated plate

Enhancements to Existing ESP -Summary

- Good Maintenance
 - Yearly inspections
- Sectionalization
- Optimize Rapping ***
- Review Gas Distribution
- Minimize Sneakage ***
- Power Supplies
- Discharge Electrode Design

*** These upgrades are a less expensive option for the overall benefit gained.

Note: Improvements are not completely additive – there is a practical limit to how much improvement one can capture from an ESP

Structural Changes to the ESP Casing

Increased ESP Plate Height

- Increase collecting area of ESP
- Lower gas velocity and increase residence time in treatment area (if no change in gas volume)
- Factors to consider:
 - Clearance issues over the ESP
 - Collecting area Aspect Ratio (length vs height)
 - Requires change in discharge electrodes to match new height
 - Need to evaluate structurally the casing/support steel
 - → May needto increase T/R sizes

Additional ESP Field/Chamber

- Add field at inlet or outlet of existing ESP
 - → Increase collecting area
 - Increase sectionalization (mechanical and electrical) by adding fields
 - Increase residence time in treatment area (if no change in volume)
- Additional chamber
 - Size dependent upon level of performance improvement desired
 - → Space constraints
 - → Ductwork issues

Value Added Services

- Outage Inspections
 - → Report write-up
- Recommended spares for ESPs
 - Develop proposal for recommended spare parts
- Solution development assistance
 - Tightening emissions requirements
 - Diagnose ongoing performance issues
- Wipe and Cleans
- Complete refurbishment/replacement projects

www.cbpg.com